On the Non-minimal Codewords in Binary Reed-Muller Codes

نویسندگان

  • Yuri L. Borissov
  • Nikolai L. Manev
  • Svetla Nikova
چکیده

First, we compute the number of non-minimal codewords of weight 2dmin in the binary Reed-Muller code RM(r,m). Second, we prove that all codewords of weight greater than 2m − 2m−r+1 in binary RM(r,m), are non-minimal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the non-minimality of the largest weight codewords in the binary Reed-Muller codes

The study of minimal codewords in linear codes was motivated by Massey who described how minimal codewords of a linear code define access structures for secret sharing schemes. As a consequence of his article, Borissov, Manev, and Nikova initiated the study of minimal codewords in the binary Reed-Muller codes. They counted the number of non-minimal codewords of weight 2d in the binary Reed-Mull...

متن کامل

Minimal codewords in Reed-Muller codes

Minimal codewords were introduced by Massey [8] for cryptographical purposes. They are used in particular secret sharing schemes, to model the access structures. We study minimal codewords of weight smaller than 3·2m−r in binary Reed-Muller codes RM(r, m) and translate our problem into a geometrical one, using a classification result of Kasami, Tokura, and Azumi [5, 6] on Boolean functions. In ...

متن کامل

On the Non-Minimal codewords of weight 2dmin in the binary Reed-Muller Code

We compute the number of non-minimal codewords of weight 2dmin in the binary Reed-Muller code.

متن کامل

Minimal/nonminimal codewords in the second order binary Reed-Muller codes: revisited

The result on the weight distribution of minimal codewords in the second order binary Reed-Muller code RM(2, m), was announced for the first time by Ashikhmin and Barg at ACCT’94. They gave only a sketch of the proof and later on a short and nice complete proof of geometric nature was exhibited in their paper: A. Ashikhmin and A. Barg, ”Minimal Vectors in Linear Codes”, IEEE Trans. on Informati...

متن کامل

Correctable Errors of Weight Half the Minimum Distance for the First-Order Reed-Muller Codes

The number of correctable errors of weight half the minimum distance is given for the first-order binary Reed-Muller codes. It is shown that the size of trial set, which is introduced by Helleseth et al. and can be used for a minimum distance decoding or estimating the number of uncorrectable errors, for the first-order Reed-Muller codes is at least that of minimal codewords except for small code

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2003